Cognitive correlates of BOLD Resting-State Dynamic Functional Connectivity

Javier González-Castillo

National Institute of Mental Health, Bethesda, MD

March 3rd, 2020 - Whistler, CA

Mean Effect – Static Functional Connectivity

What do subjects do when we ask them to lie still in the scanner and let their mind wander?

- * Engage in stimuli independent thoughts
 - * Inner speech
 - * Inner seeing
 - * Unsymbolized thinking
 - * Feelings
- * Have periods of sensory awareness

* Visual * Auditory * Tactile

* General house-keeping functions

There is significant inter-subject variability in the distribution of inner experiences subjects have in the scanner.

Linking dynamic FC to ongoing cognition – Methods Development: Framework

VIH National Institute of Montal Health

Continuous Rest Dataset | Application

20 Subjects | 7T | 2x2x2 mm³ | TR = 1.5s

Multi-Task Dataset | Testing

Continuous Rest Dataset | Application

- 175 Subjects, each with four 15-min long, eyes-open resting state scans with concurrent eye tracking recordings.
- Subjects that stayed awake during the whole rest scan (based on eye tracking traces).

• Of these, we focused on the 20 subjects with the least amount of motion.

Average absolute motion was 0.27 ± 0.18 mm, and average relative volumeto-volume motion was 0.10 ± 0.07 mm.

Van Essen et al. Neurolmage 2013

REST (180s)

Embeddings for representative subjects VIDEO (180s) REST (180s) VIDEO (180s) 2BACK (180s) MATH (180s) 2BACK (180s) MATH (180s) 0.5 Voxel-wise Timeseries 0.0 -0.5 -0.5 -0.5 0.0 0.0 -0.5 0.5 0.5 Dynamic FC Matrix 1. Generate Low Dimensional Representations of dFC Matrix 0.5 -0.5 0.0 0.0 -0.5 0.5 0.5 0.5 0.0 0.0 -05 × 0.5 0.5 0.0 -0.5 -0.5 0.0 0.0 -0.5

0.5

0.5

NIH National Institute of Mental Health

Hemodynamic Deconvolution – Find Most Prominent Activity Inducing Events (SPFM; *Caballero-Gaudes et al. HMB 2011*)

VIH National Institute of Mental Health

Gonzalez-Castillo et al. NeuroImage (2019)

Group Level Decoding Accuracy Results

Linking dynamic FC to ongoing cognition – Application to Resting-State Dataset

unctional Imaging Methods 🚁				
Sbj05		TOP 5 TOPICS	0.28 0.24 0.20 0.18 0.15	Visual, areas, stimulus, Blind, visual, sighted, Motion, biological, moving, Shape, shapes, texture, Stream, visual, streams,
		TOP 5 TOPICS	0.22 0.22 0.19 0.19 0.18	Motor, sensory, areas, Motor, finger, movements, Movement, movements, motor, Touch, tactile, somatosensory, Stimulation, somatosensory, tactile,
		TOP 5 TOPICS	0.20 0.18 0.18 0.18 0.18 0.17	Task, tasks, matching, Arithmetic, calculation, mathematical, Spatial, location, locations, Number, numerical, numbers, Action, actions, observation,

- ion on Functional Imaging Methods 🚌
 - * At the group level, only 78 topics (out of 400) were marked as significant outliers (right tail).
 - * Of those 78, very few appeared as significant in multiple occasions (e.g., different spikes)

- * Data-driven estimates of covert cognition agree with previous reports of what are the most common mental activities subjects perform during rest.
- * "dFC + Deconvolution + Neurosynth" can help us uncover the cognitive correlates of distinct dFC patterns during task and rest.
- * Dynamic FC is modulated by covert cognition during rest

* <u>We cannot evaluate the accuracy of individual guesses (decoding events)</u>

- * Validation / Decoding always through the lens of task-results:
 - NeuroSynth is built using results from task-based studies
 - Differences in HRF between rest and task
 - Uncertainties in interpretation
 - Visual attention vs. Visual imagery
 - Overlap with unconscious brain activity

* <u>Best-case scenario</u>, we likely only captured most prominent "events/periods":

- Missed a lot of important information needed to fully understand the joint dynamics of brain and "mind" during rest.

Linking dynamic FC to ongoing cognition - Future Steps

National Institute of Mental Health

Linking dynamic FC to ongoing cognition – Future Steps

NIH National Institute of Mental Health

Sample at random periods

Linking dynamic FC to ongoing cognition - Future Steps

H National Institute of Montal Health

🖡 Obtain an unconstrained description of mental life [🔗 zero assumptions 🛞 hard to analyze]

Obtain description of mental life across pre-determined dimensions [🔗 assumptions 🔗 easy to analyze]

NIH	National Institut of Montal Healt
-----	--------------------------------------

Resting State Functional Connectivity	=>	Mean Effect (Static Functional Connectivity)	Ċ	Small Fluctuations over the Mean (Dynamic Functional Connectivity)

* Since one of the original reports (Chang et al. 2010), we have made substantial progress:

- The avid debate regarding its significance (artifactual or neuronally meaningful) is starting to settle.
- Covert ongoing cognition is a modulating factor of Dynamic FC estimates.
- Reports of significant differences in dynamic FC across populations (not captured by static measures).

* Yet, there is substantial work ahead of us:

- What are the relative contributions of the different sources of variability to Dynamic FC?
- Linking brain states (dFC) and mental states will require taking into consideration first-person reports

AFNI

Section on Functional Imaging Methods Scientific and Statistical Computing Core

Peter A. Bandettini Daniel A. Handwerker

Peter Molfese Emily Finn Yuhui Chai **Natasha Topolski Ramya Varadarajan** Arman Khojandi Chandler Ricahrds

<u>Functional MRT</u> <u>Facility</u>

Sean Marrett Vinai Roopchansingh Andy Derbishire Linquing Li **Robert W. Cox** Paul Taylor Daniel Glen **Richard Reynolds** Gang Chen

Machine Learning Team

Francisco Pereira Charles Zheng Patrick McClure

