Multi-echo EPI for resting state and activation-based fMRI

Javier González-Castillo

Section on Functional Imaging Methods, NIMH, NIH

March 24th, 2016. Texas Tech Neuroimaging Institute, Lubbock, TX.

- Noise sources in fMRI

- Multi-echo fMRI as a Denoising Technique

- ME-ICA Denoising

- ME-ICA Denoising Applications

- Conclusions

Introduction to fMRI: Noise Sources

fMRI=f(

Head Motion

Hebodynamic

Diff.

Physiological Noise

Low Compliance

Population

homogenei

Diff. Artifacts Spatial Smoothing Sensitivity **O**A

ONLY A SUBSET OF THE SIGNAL WE MEASURE CONTAIN INFORMATION ABOUT NEURONAL PROCESSES

How to best isolate and interpret this extremely valuable component of the fMRI signal?

fMRI Time series = Signal of Interest (NEURONAL ORIGN) + Other Fluctuations

Bianciardi et al., Mag Res Imag. 2009

Gonzalez-Castillo et al. PNAS 2012

NOISE SOURCE

MODEL REGRESSOR

Head Motion

Physiological Noise

Legendre Polynomials

Head Motion Estimates

RETROICOR + RVT

Lateral Ventricle Regressors

Localized HW Instabilities

Local WM Regressor

MEICA is not only a pre-processing technique, it also requires data to be acquired differently.

ICA DECOMPOSITION TO OBTAIN SPATIALLY INDEPENDENT SOURCES OF FLUCTUATION IN THE DATA

> AUTOMATIC CLASSIFICATION OF ICA COMPONENTS INTO "GOOD OR BAD" BASED ON A PHYSICALLY INFORMED ECHO-DEPENDENCE MODEL OF THE SIGNALS

Multi-Echo Data

TE₁

FIM Weighted Linear Combinations of Multi-Echo Data

We have N_e pseudo-concurrent measurements \rightarrow why not simply combine them to reduce uncorrelated white noise present in each individual measurement?

Weighted Summation

$$\hat{S}(x,t) = \sum_{n=1}^{N} S(x,t,TE_n) \cdot w_v(TE_n)$$

$$w_{v}(TE_{n}) = \frac{TE_{n}e^{-TE_{n}/T_{2,v}^{*}}}{\sum_{n}TE_{n} \cdot e^{-TE_{n}/T_{2,v}^{*}}}$$

 Helps to spatially maximize CNR and also to recover some signal level in regions affected by drop-out.

Posse et al., MRM 1999

500

ME-ICA: Echo-Dependence Model

Echo Time (TE) Dependence Analysis

[1] Voxel-wise Fit against all TEs

FSL Documentation: <u>http://fsl.fmrib.ox.ac.uk/fslcourse/lectures/melodic.pdf</u>

ME-ICA: How it works

Карра (к) = 210

Rho (
$$\rho$$
) = 10

Kundu et al., NeuroImage 2012

ME-ICA: How it works (2)

Карра (к) = 32

Rho (ρ) = 81

ME-ICA: Outcome

ME-ICA: Outcome

Market Multi-Echo fMRI – Improvements for task-based data

Gonzalez-Castillo et al., NeuroImage (Under Review)

Detection of activity in very slow paradigms (2 min long blocks)

ME-ICA & Cardiac Gated fMRI

Brooks et al. 2014

Gonzalez-Castillo et al., NeuroImage (Under Review)

 ΔTR

Multi-Echo & Simultaneous Multi-Slice (MESMS)

Non-BOLD Component: MSS Artifact

Number of BOLD-like components significantly larger for MESMS

Olafsson et al., NeuroImage 2015

- Multi-echo fMRI allows to capture additional information with minimal costs in terms of temporal and spatial resolution.
- □ Such additional information can be used to:
 - □ Increase CNR in drop-out regions (e.g., Optimal Combination of Echoes).
 - □ Automatically separate BOLD-like from Non-BOLD-like components (ME-ICA).
- ME-ICA is a promising denoising methodology that combines ICA with TE-Dependence Analysis:
 - \Box Can substantially improve the SNR of the data \rightarrow Quality of the results.
 - □ Still under development.

Acknowledgements

Section on Functional **Imaging Methods**

Peter A. Bandettini Daniel A. Handwerker Hang Joon Jo Prantik Kundu Dave Jangraw Meghan Robinson Colin Hoy Laura Buchanan Adam Thomas **Ben Gutierrez**

Functional MRI Facility

Sean Marrett Vinai Roopchansingh Souheil Inati Andy Derbishire

Scientific and Statistical **Computing Core**

Robert W. Cox Ziad S. Saad Daniel Glen **Richard Reynolds** Gang Chen

