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Introduction / Motivation

 BOLD fMRI time-series are noisy
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 BOLD responses are many times in the same order of magnitude as the noise
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 BOLD responses vary regionally in shape and timing
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Introduction / Motivation (Il)

e
fMRI Activation maps are highly dependent on:

* Available Temporal Signal-to-Noise
* Assumptions on Response Shape and Timing

Vm(Navg) = 71.4e4 x
x1 04"( 7+ 0.7l0g(Navg) )
T 4 J \
IS
=
- 2 SUSTAINED
5 Vm(Navg) = 7.17e3 x
L o (1 + 2.6log(Navg) )
3 Y.
© NPT § 3 ==
£ 1|l g ‘\ n
= N~ (L
& rﬂl! R
o & A6 6 Bo TRANSIENT
ACTIVATION VOLUME INCREASES CONSIDERATION OF ADDITIONAL RESPONSE
LOGARITHMICALLY WITH NUMBER OF SCANS. SHAPES ALLOWS DETECTION OF NEW
Saad et al., Neurolmage 2003 ACTIVATION SITES Uludag et al., MRM 2008




Introduction/Motivation (I11)

To what extent is the sparseness of task-based fMRI activation maps real or a result
of noise levels (insufficient CNR) and/or modeling decisions?
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Experimental Design / Methods
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Results: Primary Visual Cortex

Rest TASK Rest TASK Rest TASK Rest TASK Rest TASK Rest
t t 4 t ot K t 1 t 1 t
Os 30s 50s 90s 110s 150s 170s 210s 230s 270s 290s 340s
INDIVIDUAL RUNS AVERAGING
y RUN=001 3 ' 104 '
102
100
30 50 90 110 150 170 210 230 270290 98 30 50 90 110 150170 210 230 270290
Time (s) Time (s)

Gonzalez-Castillo et al., PNAS 2012



Results: Anterior Insular Cortex
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Results: Primary Auditory Cortex
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Results: Occipito-parietal Junction
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Quantification / Dependence on TSNR & Response Model

How does this observation translate in terms of volume of activation?
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* Activation Volume increases considerably between N,,,.=5-10 and N,,,.=100
* Activation Volume increases with versatility of expected response models
* For N,,,s=100, Unconstrained Model & pFDR<0.05 =» Active Volume = 95%
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Biological/Neuronal Significance (I)
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Are these additional responses biologically meaningful?
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Biological/Neuronal Significance (ll)

ARE RESPONSE SHAPES RANDOMLY DISTRIBUTED ACROSS THE BRAIN
OR

DO THEY CLUSTER IN A FUNCTIONALLY/ANTOMICALLY MEANINGFUL
MANNER? R N

WITHIN-SUBJECT AVERAGED
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Biological/Neuronal Significance (lll)
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Follow-Up Experiments @ 7T

€ Advance our understanding of the biological/neuronal significance of the original observation.
=> Vary Cognitive/Stimulation Load across subjects
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Results (1): Data Quality Comparison across studies
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Results (l11): Activation Volume vs. Cognitive/Stimulation Demands
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Results (111): Contribution of the three primary response types

Waveshape Index:
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Results (111): Contribution of the three primary response types
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Similar Observations for Motor Task

Extension to group level in the context of a delayed sequential motor task
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“..rich variety of hemodynamic responses elicited by a motor task is systematic enough
to decompose the whole human brain into stable task-evoked networks at the group
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FIM Unhidden Activation — Study of Pain
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“Our findings suggest that the areas that respond with stimulus-locked activation to painful stimuli are likely to
reflect the activity of different networks, each having different temporal behavior, and possibly, subserving different

cognitive f unctions. Cauda et al. Cerebral Cortex 2014



Other ways to uncover “hidden activations”
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Conclusions

=>» Simple tasks can significantly modulate on-going BOLD fluctuations across large portions of the brain.
=>» Traditional analyses can miss more than half of locations affected by task performance.

=>» Subtle interregional differences in BOLD response contain sufficient information to produce functional

parcellations of the whole brain “in action”, which can deviate in some instances from connectivity patterns
measured at rest.

=>» A simple Active/Inactive dichotomy does not capture all information present in the data.

Limitations / Additional Questions

=> First, and foremost, the impossibility to unquestionably claim a neuronal origin for all detected hemodynamic
responses.

Statistical Significance <<<< Biological Significance <<<< Neuronal Significance

= Need to better understand “non-traditional” hemodynamic responses.
= Differentiating task-essential regions from task-accessory regions.

=» Distinguishing hemodynamic events tightly co-localized to neuronal activity from those that only manifest as a
vascular-driven distant echo of true neuronal modulation at a different location.

= How to optimally visualize, interpret and report all this information.
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